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ABSTRACT

This paper studies the problem of prominent streak discovery in se-
quence data. Given a sequence of values, a prominent streak is
a long consecutive subsequence consisting of only large (small)
values. For finding prominent streaks, we make the observation
that prominent streaks are skyline points in two dimensions– streak
interval length and minimum value in the interval. Our solution
thus hinges upon the idea to separate the two steps in prominent
streak discovery– candidate streak generation and skyline opera-
tion over candidate streaks. For candidate generation, we propose
the concept of local prominent streak (LPS). We prove that promi-
nent streaks are a subset of LPSs and the number of LPSs is less
than the length of a data sequence, in comparison with the quadratic
number of candidates produced by a brute-force baseline method.
We develop efficient algorithms based on the concept of LPS. The
non-linear LPS-based method (NLPS) considers a superset of LPSs
as candidates, and the linear LPS-based method (LLPS) further
guarantees to consider only LPSs. The results of experiments us-
ing multiple real datasets verified the effectiveness of the proposed
methods and showed orders of magnitude performance improve-
ment against the baseline method.
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1. INTRODUCTION
This paper defines the problem of prominent streak discovery in

sequence data and presents efficient algorithms for finding promi-
nent streaks. A piece of sequence data is a series of values or
events. This includes time-series data, in which the data values
or events are often measured at equal time intervals. Sequence and
time-series data is produced and accumulated in a rich variety of
applications. Examples include stock quotes, sports statistics, tem-
perature measurement, Web usage logs, network traffic logs, Web
clickstream, and customer transaction sequence.

Given a sequence of values, a prominent streak is a long con-
secutive subsequence consisting of only large (small) values. Ex-
amples of such prominent streaks include consecutive days of high
temperature, consecutive trading days of large stock price oscilla-
tion, consecutive games of outstanding performance in professional
sports, consecutive hours of high volume of TCP traffic, consecu-
tive weeks of high flu activity, and so on. It is insightful to investi-
gate prominent streaks since they intuitively and succinctly capture
extraordinary subsequences of data.

Prominent streak discovery can be particularly useful in help-
ing journalists to identify newsworthy stories when data sequences
evolve, investigators to find suspicious phenomena, and news an-
chors and sports commentators to bring out attention-seizing fac-
tual statements. Therefore it will be a key enabling technique for
computational journalism [7]. In fact, we witness the mentioning
of prominent steaks in many real-world news articles:

∙ “This month the Chinese capital has experienced 10 days with a maxi-

mum temperature in around 35 degrees Celsius – the most for the month

of July in a decade.” (http://www.chinadaily.com.cn/china/2010-07/27/
content_11055675.htm)

∙ “The Nikkei 225 closed below 10000 for the 12th consecutive week, the

longest such streak since June 2009.” (http://www.bloomberg.com/news/
2010-08-06/japanese-stocks-fall-for-second-day-this-week-on-u-s-jobless-
claims-yen.html)

∙ “He (LeBron James) scored 35 or more points in nine consecutive games
and joined Michael Jordan and Kobe Bryant as the only players since

1970 to accomplish the feat.” (http://www.nba.com/cavaliers/news/lbj_
mvp_candidate_060419.html)

∙ “Only player in NBA history to average at least 20 points, 10 rebounds

and 5 assists per game for 6 consecutive seasons. (Kevin Garnett)”

(http://en.wikipedia.org/wiki/Kevin_Garnett)

The examples indicate that general prominent streaks can have a
variety of constraints. A streak can be on multiple dimensions (e.g.,
⟨point, rebound, assist⟩), its significance can be with regard to a
certain period (e.g., “since June 2009”) or a certain comparison
group (e.g., “the month of July”), and we may be interested in not
only the most prominent streaks but also the top-k most prominent
ones (e.g., “X joined Y and Z as the only players”).



Figure 1: A Data Sequence and its Prominent Streaks.

Given its real-world usefulness and variety, the research on promi-
nent streaks in sequence data opens a spectrum of challenging prob-
lems. In this initial effort, we undertake the problem of discovering
the simplest kind of prominent streaks, i.e., those without the above
constraints. We formally define the concept of prominent streak
and our problem as follows.

1.1 Problem Definition

Definition 1 (Streak and Prominent Streak): Given ann-element
sequence P=(p1, ⋅ ⋅ ⋅ , pn), a streak is an interval-value pair ⟨[l, r], v⟩,
where 1≤l≤r≤n and v=minl≤i≤r pi.

Consider two streaks s1=⟨[l1, r1], v1⟩ and s2=⟨[l2, r2], v2⟩. We
say s1 dominates s2, denoted by s1≻s2 or s2≺s1, if r1−l1≥r2−l2
and v1>v2, or r1−l1>r2−l2 and v1≥v2.

With regard to P=(p1, ...pn), the set of all possible streaks is
denoted by SP . A streak s∈SP is a prominent streak if it is not
dominated by any streak in SP , i.e., ∄s′ s.t. s′∈SP and s′≻s. The
set of all prominent streaks in P is denoted by PSP .

Problem Statement: The prominent streak discovery problem is
to, given a sequence P , produce PSP .

Figure 1 shows our running example of a 10-value sequence
P=(3, 1, 7, 7, 2, 5, 4, 6, 7, 3). There are 5 prominent streaks in P–
⟨[1, 10], 1⟩, ⟨[3, 10], 2⟩, ⟨[6, 10], 3⟩, ⟨[6, 9], 4⟩, ⟨[3, 4], 7⟩. For in-
stance, ⟨[6, 9], 4⟩ is a prominent streak of minimal value 4, whose
interval is from p6 to p9. ⟨[1, 10], 1⟩, the whole data sequence, is
also a trivial prominent streak because no other streak can possibly
dominate the sequence itself. The streak ⟨[8, 9], 6⟩ is an instance of
non-prominent streaks because it is dominated by ⟨[3, 4], 7⟩.

1.2 Overview of the Solution
A brute-force method for discovering prominent streaks is not

appealing. One can enumerate all possible streaks and decide if
each streak is prominent by comparing it with every other streak.
Given a sequence P with length n, there are ∣SP ∣=

(

n+1
2

)

streaks
in total. Thus the number of pair-wise streak comparison would

be
(

∣SP ∣
2

)

=n4+2n3−n2−2n
8

. Given a sequence of length 10000, the

brute-force approach enumerates 108 streaks and performs 1016

comparisons. Many real-world sequences can be quite long. The
sequence of daily closing prices for a stock with 40-year history
has about 10000 values. A one-year usage log for a Web site has
8760 values at hourly interval.

Prominent streaks are in fact skyline points [5] in two dimensions–
streak interval length (r− l) and minimum value in the interval (v).
A streak is a prominent streak (skyline point) if it is not dominated
by any point, i.e., there exists no streak that has both longer interval
and greater minimum value.

Based on this observation, our solution hinges upon the idea to
separate the two steps of prominent streak discovery– candidate

streak generation and skyline operation over candidate streaks. In
candidate generation, we prune a large portion of non-prominent
streaks without exhaustively considering all possible streaks. For
skyline operation, we leverage efficient algorithms from the rich

literature on this topic, e.g., [5, 21, 11, 14]. The effectiveness of
pruning in the first step is critical to overall performance, because
execution time of skyline algorithms increases superlinearly by the
number of candidate points [5].

Candidate streak generation: We considered three methods with
increasing pruning power in candidate generation– a baseline method,
a non-linear LPS (local prominent streak)-based method, and a lin-
ear LPS-based method. The baseline method exhaustively enumer-
ates SP , all possible streaks in a sequence P , by a nested-loop over
the values in P . The sketch of this method is in Algorithm 1. It

produces quadratic (
n(n+1)

2
) candidate streaks. We then propose

the concept of local prominent streak (LPS) for substantially re-
ducing the number of candidate streaks (Section 3). The intuition
is, given a prominent streak s, there cannot be a super-sequence of
s with greater or equal minimal value. In other words, s must be
locally prominent as well. Hence we only need to consider LPSs
as candidates. The algorithm sequentially scans the data sequence
and maintains possible LPSs. We further make the observation that
an LPS cannot have a preceding or succeeding data entry that is
greater than or equal to its minimal value. Therefore we find the
left-end (right-end) of an LPS when we find a data entry that is
greater than its preceding (succeeding) entry. The non-linear LPS-
based method finds a superset of LPSs as candidates, while the
linear LPS-based method guarantees to find only LPSs.

Note that to couple candidate streak generation with skyline op-
eration, Algorithm 1 maintains a dynamic skyline and updates it
whenever a new candidate streak is produced. The updating proce-
dure skyline_update is in Algorithm 2 and is introduced below.

Algorithm 1: Baseline Method

Input: Data sequence P=(p1, ..., pn)
Output: Prominent streaks skyline

skyline← empty1

for r = 1 to n do2

min_value ←∞3

for l = r downto 1 do4

min_value← min(pl,min_value)5

s← ⟨[l, r],min_value⟩ // candidate streak6

skyline← skyline_update(skyline, s)7

Algorithm 2: Update Dynamic Skyline (skyline_update)

Input: Dynamic skyline skyline, new candidate streak s = ⟨[l, r], v⟩
Output: Updated dynamic skyline skyline

Find the largest i in skyline s.t. vi ≤ v1

if s ≺ si or s ≺ si+1 then2

return skyline3

while s ≻ si and i > 0 do4

Delete si from skyline5

i← i− 16

Insert s into skyline7

return skyline8

Skyline operation: Our focus is not to compare various skyline
algorithms. Many existing algorithms can be leveraged. What mat-
ters is the number of candidate streaks produced by the candidate
generation step. This is also verified by our experiments which
show that, under various skyline algorithms, the candidate streak
generation methods in Section 3 perform and compare consistently.

We can use a sorting-based method for finding the skyline points
in a two-dimensional space [5]. If the candidate streak generation
step does not prune streaks effectively, we cannot hold all candidate
streaks in memory. The memory overflow can be addressed by
external-memory sorting.

Another approach is to progressively update a dynamic skyline



with candidate streaks, based on the nested-loop method in [5]. The
outline of this approach is shown in Algorithm 2. We use skyline
to denote the dynamic skyline. When a new candidate streak s
is generated, s is inserted into skyline if it is not dominated by
any point in skyline. The algorithm also checks if some points in
skyline are dominated by s and eliminates them from skyline.

The dominance relationship can be efficiently checked, given
that the streaks have only two dimensions– interval length (r − l)
and minimum value (v). The key idea is that the lengths of streaks
monotonically decrease as their minimal values increase (except
that there can be identical points, i.e., streaks with equal lengths and
equal minimal values.) Hence the streaks in skyline are ordered
by v (or by r − l). Suppose the candidate streak is s = ⟨[l, r], v⟩.
We only have to find in skyline a pivoting streak si = ⟨[li, ri], vi⟩
such that i is the largest index with vi ≤ v, i.e., vi ≤ v < vi+1,
then check its neighbors to determine the dominance relationship.
For quickly finding si, we use a balanced binary search tree (BST)
on v to store skyline. (Thus we call it BST-based skyline method.)
We can prove that s is dominated by some points in skyline if and
only if s is dominated by si or si+1. Furthermore, if s dominates
totally k streaks in skyline, then the k streaks are si, si−1, . . .,
si−k+1. (We omit the discussion of boundary cases, i.e., i=0 or
i=∣skyline∣.)

In comparison with the sorting-based method, the above BST-
based skyline method saves both memory space and execution time.
It avoids memory overflow because the number of streaks in the
dynamic skyline in most cases remains small enough to fit in mem-
ory. Hence no streak needs to be read from/written to secondary
memory. The small size of dynamic skyline in real data is veri-
fied by our experiments in Section 5. After all, prominent streaks
(and skyline points in general) are supposed to be minority, other-
wise they cannot stand out to warrant further investigation. Fur-
thermore, even if the dynamic skyline grows large, a method such
as the block nested-loop based method in [5] can be applied to fall
back on secondary memory. The small size of dynamic skyline
also means small number of streak comparisons. Intuitively, given
c candidate streaks, a fast comparison-based sorting algorithm (say
quicksort) requires O(c log c) comparisons, while the BST-based
method only requires O(c log s) comparisons, where s is the max-
imal size of the dynamic skyline during computation. Experiments
in Section 5 show that s is typically much smaller than c.

1.3 Summary of Contributions and Outline
To summarize, this paper makes the following contributions:

∙ We defined the problem of prominent streak discovery. The sim-
ple concept is useful in many real-world applications. To the best
of our knowledge, there has not been study along this line.

∙ We proposed the solution framework to separate candidate streak

generation and skyline operation during prominent streak dis-
covery. Under this framework, we designed efficient algorithms
for candidate streak generation, based on the concept of local
prominent streak. Both the non-linear LPS-based method (NLPS)
and the linear LPS-based method (LLPS) produce substantially
less candidate streaks than the quadratic number of candidates
produced by a baseline method. LLPS further guarantees a lin-
ear number of candidate streaks.

∙ We conducted experiments over multiple real datasets. The re-
sults verified the effectiveness of our methods and showed or-
ders of magnitude performance improvement over the baseline
method. We also showed some insightful prominent streaks dis-
covered from real data, to highlight the practicality of this work.

The rest of the paper is organized as follows. In Section 2 we re-
view related work. Section 3 presents the NLPS and LLPS methods

for candidate streak generation. Section 4 discusses how to adapt
the algorithms to monitor prominent streaks when data sequence
continuously grows. Experiment setup and results are reported in
Section 5. Section 6 concludes the paper.

2. RELATED WORK
Data mining on sequence and time-series data has been an ac-

tive area of research, where many techniques are developed for
similarity search and subsequence matching in sequence and time-
series databases [1, 8, 2, 26], finding sequential patterns [3, 20, 27,
15, 25], classification and clustering of sequence and time-series
data [19, 13, 12, 18], biological sequence analysis [4, 17], etc.
However, we are not aware of prior work on the prominent streak
discovery problem proposed in this paper.

The skyline of a set of tuples is the subset of tuples that are not
dominated by any tuple. A tuple dominates another tuple if it is
equally good or better on every attribute and better on at least one
attribute. Skyline query has been intensively studied over the last
decade. Kung et al. [9] first proposed in-memory algorithms to
tackle the skyline problem. Börzsönyi et al. [5] considered the
problem in database context and integrated skyline operator into
database system. They also invented a block-nested-loop algo-
rithm (BNL) and extended the divide-and-conquer algorithm (DC)
from [9]. An improvement of BNL is discussed in [6].

Progressive skyline algorithms optimize the efficiency in return-
ing initial skyline points while producing more results progres-
sively. Various algorithms developed along this line include the
bitmap-based algorithm and the index-based algorithm [21], the
nearest neighbor search algorithm [11], and the branch-and-bound
skyline algorithm (BBS) [14]. Other variants of skyline queries
have also been studied, including skyline cube which aims to an-
swer skyline queries over any combination of dimensions [16, 24].

Jiang et al. [10] studied the problem of interval skyline queries
on time-series. Given a set of time series and a time interval, they
find the time series that are not dominated by others in the interval.
A time series dominates another one if its value at every position is
at least equal to the corresponding value in the other time series and
it is at least larger at one position. The point-by-point equi-length
interval comparison is clearly different from our problem.

The plateau of a time series is the time interval in which the
vlaues are close to each other (within a given threshold) and are
no smaller than the values outside the interval [22]. The plateau
problem is not concerned about comparing different intervals.

Our techniques can be useful in disease outbreak detection, by
identifying prominent streaks in time series of aggregated disease
case counts. Previous works on outbreak detection focus on con-
ventional data mining tasks such as clustering and regression [23].
The concept of prominent streaks has not been studied before.

3. DISCOVERING PROMINENT STREAKS

FROM LOCAL PROMINENT STREAKS
For ann-element sequence P , the baseline method (Algorithm 1)

produces
n(n+1)

2
candidate streaks. In this section, based on the

concept of local prominent streak (LPS) we propose the non-linear
LPS-based (NLPS) and linear LPS-based (LLPS) methods. Both
dramatically reduce the number of candidate streaks in practice.
LLPS further guarantees only a linear number of candidate streaks.

3.1 Local Prominent Streak (LPS)

Definition 2 (Local Prominent Streak): Given a sequence of data
values P = (p1, ⋅ ⋅ ⋅ , pn), we say a streak s = ⟨[l, r], v⟩ ∈ SP is a
local prominent streak (LPS) or locally prominent if there does not



Figure 2: Local Prominent Streaks.

exist any other streak s′ = ⟨[l′, r′], v′⟩ ∈ SP such that [l′, r′] ⊃
[l, r] and s′ ≻ s. (I.e., there does not exist such s′ that [l′, r′] ⊃
[l, r] and v′ ≥ v.) The symbol ⊃ denotes the subsumption check
between two intervals, i.e., [l′, r′] ⊃ [l, r] if and only if l′ ≤ l ∧
r′ > r or l′ < l ∧ r′ ≥ r. We denote the set of local prominent
streaks in sequence P as ℒPSP .

Figure 2 shows all the local prominent streaks found in our run-
ning example. All other streaks are not locally prominent. For
example, ⟨[6, 8], 4⟩ is not locally prominent since it is dominated
by ⟨[6, 9], 4⟩ and [6, 9] ⊃ [6, 8]. In the following we give several
important properties of local prominent streaks.

Property 1: Every prominent streak is also a local prominent streak,
i.e., PSP ⊆ ℒPSP .

Proof: Suppose there is a prominent streak that is not locally promi-
nent, i.e., ∃s ∈ PSP s.t. s /∈ ℒPSP . By Definition 2, there exists
some streak s′ such that [l′, r′] ⊃ [l, r] and s′ ≻ s. That is con-
tradictory to Definition 1 which says s cannot be dominated by any
other streak. Therefore a streak cannot be prominent if it is not even
locally prominent.

The above Property 1 is illustrated by Figure 2, as all the promi-
nent streaks in Figure 1 also appear in Figure 2. However, the re-
verse of Property 1 does not hold– local prominent streaks are not
necessarily prominent streaks. For example, ⟨[8, 9], 6⟩ is an LPS
but is dominated by ⟨[3, 4], 7⟩ and therefore is not in Figure 1.

Lemma 1: Suppose s = ⟨[l, r], v⟩ and s′ = ⟨[l′, r′], v′⟩ are two
different local prominent streaks in P , i.e., s, s′ ∈ ℒPSP , l ∕= l′ or
r ∕= r′. For any k ∈ argmini∈[l,r]pi and k′ ∈ argmini∈[l′,r′]pi,
we have k ∕= k′. I.e., argmini∈[l,r]pi ∩ argmini∈[l′,r′]pi = �.

Proof: If [l, r]∩[l′, r′] = �, i.e., the two intervals do not overlap, it
is obvious that k ∕= k′. Now consider the case when [l, r]∩[l′, r′] ∕=
�, i.e., l ≤ l′ ≤ r or l′ ≤ l ≤ r′. By definition of argmin, pk =
v = mini∈[l,r]pi and pk′ = v′ = mini∈[l′,r′]pi. Suppose there
exist such k and k′ that k = k′. Thus v=v′=pk. By Definition 1,
we have pi ≥ v for every i ∈ [l, r] and every i ∈ [l′, r′]. Since
the two intervals [l, r] and [l′, r′] overlap, their combined interval
corresponds to a new streak s′′=⟨[l, r] ∪ [l′, r′], v⟩. 1 It is clear
s′′≻s and s′′≻s′. That is a contradiction to the precondition that
both s and s′ are LPSs. Thus, this lemma holds.

Lemma 1 indicates that two different LPSs cannot reach their
minimal values at the same position. Therefore each value position
in sequence P can correspond to the minimal value of at most one
LPS. What immediately follows is that there are at most n LPSs in
an n-element sequence. Formally we have the following property.

Property 2: ∣ℒPSP ∣ ≤ ∣P ∣.

From Property 1 we know that ℒPSP is a sufficient candidate
set for PSP , i.e., we can guarantee to find all prominent streaks if

1The two intervals can overlap in four different ways. Thus [l, r]∪
[l′, r′] = [l, r] or [l, r′] or [l′, r] or [l′, r′].

we only consider local prominent streaks. Property 2 further shows
how small ℒPSP is and thus how good it is as a candidate set.
Specifically, the size of ℒPSP is at most ∣P ∣, the length of the se-

quence, in contrast to the all
∣P ∣(∣P ∣+1)

2
possible streaks considered

by the baseline method (Algorithm 1). Thus, ℒPSP helps to prune
most streaks from further consideration. In the following sections
we present efficient algorithms for computing a superset of ℒPSP

and ℒPSP itself exactly.

3.2 ℒPSk
P and ℒPSk

Pk

(a) ℒPS9
P9

(b) ℒPS10
P10

(c) l-v plot of ℒPS9
P9

(d) l-v plot of ℒPS10
P10

Figure 3: From ℒPS9
P9

to ℒPS10
P10

.

To facilitate our discussion, we first define a new notation, ℒPSk
P .

Definition 3: ℒPSk
P is the set of local prominent streaks in P that

end at position k, i.e., ℒPSk
P ={s∣s ∈ ℒPSP and s=⟨[l, k], v⟩}.

There are two key components in the definition of ℒPSk
P . The

first is the upper script k, which fixes the right end of every interval

in the set. It is clear that ℒPS1
P , ℒPS2

P , . . . , ℒPS
∣P ∣
P is a natural

partition of ℒPSP . We use this partition scheme in the design
of our algorithms. Specifically, we show how each ℒPSk

P in this
partition is calculated in a sequential and progressive way.

The second key component in the definition of ℒPSk
P is the

lower script P , which provides the scope for local prominent streaks.
By generalizing this component we define ℒPSk

Pk
. We denote the

sequence with the first k entries of P as Pk. Then ℒPSPk
is the

set of local prominent streaks with regard to sequence Pk (instead
of P ) and ℒPSk

Pk
are those LPSs in ℒPSPk

that end at k. Due to

the change of scope, ℒPSk
Pk

is a superset of ℒPSk
P . Formally, we

have the following property.

Property 3: ℒPSk
P ⊆ ℒPSk

Pk
.

Proof: Consider any streak s ∈ ℒPSk
P . By Definition 3, s =

⟨[l, k], v⟩ and s ∈ ℒPSP . Therefore by Definition 2, there does
not exist any s′ = ⟨[l′, r′], v′⟩ in P such that s′ ≻ s and [l′, r′] ⊃
[l, k]. Since Pk is a prefix of P , i.e., the first k values in P , it
follows that there does not exist any such s′ in Pk either. Therefore
s ∈ ℒPSk

Pk
.

Consider the running example again. Figure 3(a) shows ℒPS9
P9

,
including ⟨[1, 9], 1⟩, ⟨[3, 9], 2⟩, ⟨[6, 9], 4⟩, ⟨[8, 9], 6⟩, ⟨[9, 9], 7⟩. As
shown in Figure 2, ℒPS9

P contains ⟨[6, 9], 4⟩, ⟨[8, 9], 6⟩, ⟨[9, 9], 7⟩.
Streaks ⟨[1, 9], 1⟩ and ⟨[3, 9], 2⟩ do not belong to ℒPSP , thus do
not belong to ℒPS9

P , since they are locally dominated by ⟨[1, 10], 1⟩



and ⟨[3, 10], 2⟩, respectively. By contrast, ⟨[1, 9], 1⟩ and ⟨[3, 9], 2⟩
are part of ℒPS9

P9
because they are not locally dominated by any

streak of P9, which only contains the first 9 values of P .

3.3 Non-linear LPS Method
By Property 3 and the fact that ℒPS1

P , ⋅ ⋅ ⋅ ,ℒPS
∣P ∣
P is a parti-

tion of ℒPSP , we have

ℒPSP =
∪

1≤k≤∣P ∣

ℒPSk
P ⊆

∪

1≤k≤∣P ∣

ℒPSk
Pk

(1)

Thus, we can use
∪

1≤k≤∣P ∣ ℒPSk
Pk

as our candidate set for promi-
nent streaks. Although its size can be greater than that of ℒPSP ,
in practice it does substantially reduce the size of candidate streaks,
verified by the experimental results in Section 5.

Algorithm 3: Non-linear LPS Method (NLPS)

Input: Data sequence P = (p1, ⋅ ⋅ ⋅ , pn)
Output: Prominent streaks skyline

skyline← empty1

for k = 1 to n do2

Compute ℒPSkPk
by Algorithm 43

for each streak s in ℒPSkPk
do4

skyline← skyline_update(skyline, s)5

Algorithm 4: Progressive Computation of ℒPSk
Pk

Input: ℒPSk−1
Pk−1

and pk

Output: ℒPSkPk

// When it starts, stack lps consists of streaks in ℒPSk−1
Pk−1

.

pivot← null1

while ! lps.isempty() do2

if lps.top().v < pk then3

break4

else5

pivot← lps.pop()6

if pivot == null then7

lps.pusℎ(⟨[k,k], pk⟩)8

else9

pivot.v ← pk10

lps.pusℎ(pivot)11

// Now, lps contains all the streaks in ℒPSkPk
.

Along this line, Algorithm 3 presents the method to compute
candidate streaks. Since the number of candidates may be super-
linear to the length of data sequence, we call it the non-linear LPS

method (NLPS). The algorithm iterates k from 1 to ∣P ∣, progres-
sively computes ℒPSk

Pk
from ℒPSk−1

Pk−1
when the k-th element

pk is visited, and includes them into candidate streaks. The details
of updating from ℒPSk−1

Pk−1
to ℒPSk

Pk
are in Algorithm 4, which

is based on the following Lemma 2. For convenience of discussion,
we first define the right-end extension of a streak and a streak set.

Definition 4: If s = ⟨[l, r], v⟩ is a streak in an n-element data
sequence P and r < n, the right-end extension of s is streak ⟨[l, r+
1], v′⟩, where v′ = min{v, pr+1}. The extension of a streak set S
is the set which consists of extensions of all the streaks in S.

Lemma 2: If s1=⟨[l, k], v1⟩ ∈ ℒPSk
Pk

and l ∕=k, then the streak

s2=⟨[l, k − 1], v2⟩ ∈ ℒPSk−1
Pk−1

.

Proof: First, note that v2=minl1≤i≤k−1 pi and v1=min{v2, pk}.
We prove by contradiction. Suppose s2=⟨[l1, k−1], v2⟩/∈ℒPSk−1

Pk−1
.

By Definition 3, s2 /∈ℒPSPk−1
. Further by Definition 2, there ex-

ists s3=⟨[l3, r3], v3⟩∈SPk−1
such that [l3, r3] ⊃ [l1, k − 1] and

s3 ≻ s2. Given any s=⟨[l, r], v⟩∈SPk−1
, we have r ≤ k − 1.

Therefore r3=k − 1, l3 < l1 and v3 ≥ v2. The right-end extension

of s3 is s4=⟨[l3, k], v4⟩, where v4=min{v3, pk}≥min{v2, pk}=v1.
Therefore s4 ≻ s1, which contradicts with the pre-condition that
s1∈ℒPSk

Pk
. The property holds.

Lemma 2 indicates that, except ⟨[k, k], pk⟩, for each streak in
ℒPSk

Pk
, its prefix streak is inℒPSk−1

Pk−1
. Hence, to produce ℒPSk

Pk
,

we only need to consider the right-end extension of ℒPSk−1
Pk−1

. Be-

yond that, we only need to consider one extra streak ⟨[k, k], pk⟩
since it may belong to ℒPSk

Pk
as well.

In order to articulate how to derive ℒPSk
Pk

from ℒPSk−1
Pk−1

, we

partition ℒPSk−1
Pk−1

into two disjoint sets, namely,

ℒPSk−1
Pk−1

<
= {s∣s = ⟨[l, k− 1], v⟩ ∈ ℒPSk−1

Pk−1
, v < pk}, (2)

ℒPSk−1
Pk−1

≥
= {s∣s = ⟨[l, k− 1], v⟩ ∈ ℒPSk−1

Pk−1
, v ≥ pk}. (3)

It is clear that ℒPSk−1
Pk−1

is the disjoint union of these two sets,

i.e., ℒPSk−1
Pk−1

= ℒPSk−1
Pk−1

<
∪ ℒPSk−1

Pk−1

≥
, and ℒPSk−1

Pk−1

<
∩

ℒPSk−1
Pk−1

≥
= �. Use the running example again. For ℒPS9

P9
in

Figure 3(a), since p10 = 3, the two sets areℒPS9
P9

<
= {⟨[1, 9], 1⟩,

⟨[3, 9], 2⟩}, ℒPS9
P9

≥
= {⟨[6, 9], 4⟩, ⟨[8, 9], 6⟩, ⟨[9, 9], 7⟩}.

We consider how to extend streaks in ℒPSk−1
Pk−1

<
and ℒPSk−1

Pk−1

≥
,

respectively. For simplicity of presentation, we omit the formal
proofs when we make various statements below.

∙ ℒPSk−1
Pk−1

<
: We use S1 to denote the right-end extension of

ℒPSk−1
Pk−1

<
. Since every streak in ℒPSk−1

Pk−1

<
has a minimal

value less than pk, the corresponding extended new streak has
the same minimal value. Hence all the new streaks belong to

ℒPSk
Pk

. For the running example, corresponding to ℒPS9
P9

<
,

we have S1 = {⟨[1, 10], 1⟩, ⟨[3, 10], 2⟩}.

∙ ℒPSk−1
Pk−1

≥
: We use S2 to denote the right-end extension of

ℒPSk−1
Pk−1

≥
. Since every streak in ℒPSk−1

Pk−1

≥
has a minimal

value greater than or equal to pk, the minimal value of every
streak in S2 equals pk. Hence, the longest streak in S2, denoted
as S2∗, dominates all other streaks in S2 and it is the only streak
in S2 that belongs to ℒPSk

Pk
. Furthermore, since every streak

in S2 has the same r value (the right end of the interval), i.e.,
k, S2∗ is the streak with the minimal l value (the left end of
the interval) in S2. Clearly there cannot be another streak in S2
with the same length. For the running example, corresponding to

ℒPS9
P9

≥
, we have S2 = {⟨[6, 10], 3⟩, ⟨[8, 10], 3⟩, ⟨[9, 10], 3⟩}.

The longest streak in S2 is ⟨[6, 10], 3⟩.

∙ ℒPSk−1
Pk−1

≥
= �: If ℒPSk−1

Pk−1

≥
is empty, a new streak ⟨[k, k], pk⟩

belongs to ℒPSk
Pk

. (Otherwise, it is dominated by S2∗.)

The above discussion is captured by the following Property 4.

Property 4: ℒPSk
Pk

= S1 ∪ {S2∗} if S2 ∕= � and ℒPSk
Pk

=
S1 ∪ {⟨[k, k], pk⟩} if S2 = �.

We use Figure 3 to explain the above procedure of producing
ℒPSk

Pk
from ℒPSk−1

Pk−1
. Figure 3(a) and 3(b) show ℒPS9

P9
and

ℒPS10
P10

, respectively. Figure 3(c) and 3(d) also show ℒPS9
P9

and ℒPS10
P10

, by using a different presentation– l-v plot. All the

streaks ⟨[l, r], v⟩ in ℒPSk−1
Pk−1

share the same value of r, which

is k − 1. Therefore we plot the streaks by l (x-axis) and v (y-
axis). In Figure 3(c), the 5 points represent the 5 streaks in ℒPS9

P9
:

⟨[1, 9], 1⟩, ⟨[3, 9], 2⟩, ⟨[6, 9], 4⟩, ⟨[8, 9], 6⟩, ⟨[9, 9], 7⟩. The dotted
line represents the 10-th data entry p10 = 3. It bisects ℒPS9

P9

into ℒPS9
P9

≥
(3 hollow points above the line) and ℒPS9

P9

<
(2



filled points below the line). We produce new candidate streaks
ℒPS10

P10
by extending the right ends of streaks in ℒPS9

P9
to 10.

The streaks extended from ℒPS9
P9

<
all belong to ℒPS10

P10
. They

are the 2 filled points in Figure 3(d), corresponding to ⟨[1, 10], 1⟩

and ⟨[3, 10], 2⟩. Among the streaks extended from ℒPS9
P9

≥
, only

the one with the smallest l (the longest one) belongs to ℒPS10
P10

.
It is the hollow point in Figure 3(d), corresponding to ⟨[6, 10], 3⟩.
Hence ℒPS10

P10
={⟨[1, 10], 1⟩, ⟨[3, 10], 2⟩, ⟨[6, 10], 3⟩}.

The details of the algorithm are shown in Algorithm 4. We use
a stack lps to maintain ℒPSk

Pk
. Since the streaks ⟨[l, r], v⟩ in

ℒPSk
Pk

have the same r value which equals k, we do not need
to store r in lps. Hence each item in lps has two data attributes,
v and l. The items in the stack are ordered by v (and l, since their
v and l values both strictly monotonically increase).2 In fact, Fig-
ure 3(c) and 3(d) visualize all items in lps, before and after p10 is
encountered, respectively. In each figure, the leftmost point denotes
the bottom of the stack (with the smallest v), while the rightmost
point denotes the top of the stack (with the largest v). After data en-
tries p1, ..., pk−1 are encountered, lps contains ℒPSk−1

Pk−1
. Given

data entry pk, we popped from the stack all the streaks whose v
values are greater than or equal to pk. Among the popped streaks,
the leftmost one (with the smallest l and v) is pushed back into the
stack, with v value replaced by pk and r extended from k − 1 to
k. (Again, the r value is not explicitly stored in the stack.) If no
streak was popped, then ⟨[k, k], pk⟩ is pushed into the stack. The
remaining streaks in the original stack are kept, with their v and l
values unchanged and r extended from k − 1 to k.

Algorithm 3 computes candidate streaks for an n-element se-
quence P . It invokes Algorithm 4 n times.3 In each invocation,
exactly 1 item is pushed into the stack. Therefore in total there are
n insertions and thus at most n deletions. Hence, the amortized
time complexity of Algorithm 4 is O(1).

In each iteration of Algorithm 3, we compute ℒPSk
Pk

and in-
clude them into candidate streaks. Thus, for an n-element sequence,
the total number of candidate streaks considered is

∑n

k=1 ∣ℒPSk
Pk

∣.
In the worst case, we may have a strictly increasing sequence and
the candidate streaks include all possible streaks. This is as bad
as the exhaustive baseline method in Algorithm 1. For example,
given sequence (10, 20, 30), we have ℒPS1

P1
= {⟨[1, 1], 10⟩},

ℒPS2
P2

= {⟨[1, 2], 10⟩, ⟨[2, 2], 20⟩} and ℒPS3
P3

= {⟨[1, 3], 10⟩,
⟨[2, 3], 20⟩, ⟨[3, 3], 30⟩}.

3.4 Linear LPS Method
Now we present the linear LPS (LLPS) method (Algorithm 5),

which guarantees to produce a linear number of candidate streaks
even in the worst case. Similar to Algorithm 3, this method iterates
through the data sequence and computes ℒPSk

Pk
from ℒPSk−1

Pk−1

when the k-th data entry is encountered, for k from 1 to n. How-
ever, different from Algorithm 3, it also computes ℒPSk−1

P from

ℒPSk−1
Pk−1

. Computation of both ℒPSk
Pk

and ℒPSk−1
P is done

in Algorithm 6, which is a simple extension of Algorithm 4. It is
worth noting that, since Pn=P , ℒPSn

P and ℒPSn
Pn

are identical.

To produce ℒPSk−1
P from ℒPSk−1

Pk−1
given the k-th entry pk,

Algorithm 6 is based on the following Property 5. Due to space
limitations, we omit the formal proof, but explain its intuition as

follows. Recall that the minimal value of any streak in ℒPSk−1
Pk−1

≥

(Equation (3)) is not smaller than pk. It follows that if the minimal

2We omit the proof of monotonicity.
3With regard to the first data element p1, ⟨[1, 1], p1⟩ is pushed into
the stack. It is the only prominent streak and local prominent streak
for P1.

value of a streak in ℒPSk−1
Pk−1

≥
is greater than pk, the streak can-

not grow into a longer local prominent streak without changing the
minimal value. Hence, the streak itself is a local prominent streak.

To summarize, ℒPSk−1
P is the same as ℒPSk−1

Pk−1

≥
. The only ex-

ception is the longest streak in ℒPSk−1
Pk−1

≥
, i.e., the streak with the

smallest l and thus the smallest minimal value v. If its minimal
value is equal to pk, then it does not belong ℒPSk−1

P , because it

can be right-extended and included in ℒPSk′

P for some k′ ≥ k.

Property 5: Given an n-entry sequence P , for any position 1<k≤n,

ℒPSk−1
P = {s∣s = ⟨[l, k − 1], v⟩ ∈ ℒPSk−1

Pk−1

≥
and v > pk}.

Continue the running example. We have ℒPS9
P = ℒPS9

P9

≥
=

{⟨[6, 9], 4⟩, ⟨[8, 9], 6⟩, ⟨[9, 9], 7⟩}. Note that ℒPS9
P9

≥
and ℒPS9

P

are identical because the minimal values for the streaks in ℒPS9
P9

≥

are all greater than p10.
Similar to Algorithm 4, Algorithm 6 has an amortized time com-

plexity of O(1). However, in LLPS we only need to consider the
streaks in ℒPSk−1

P as candidates. Consequently, LLPS reduces the

total number of candidate streaks to
∑n

k=1 ∣ℒPSk
P ∣, i.e., ∣ℒPSP ∣

(Equation (1)). By Property 2, ∣ℒPSP ∣ is n at most, thus LLPS
guarantees to produces only a linear number of candidate streaks
even in worst case.

Algorithm 5: Linear LPS Method(LLPS)

Input: Data sequence P = (p1, . . . pn)
Output: Prominent streaks skyline

skyline← empty1

for k = 1 to n do2

Compute ℒPSk−1
P

and ℒPSkPk
by Algorithm 63

for each streak s in ℒPSk−1
P

do4

skyline← skyline_update(skyline, s)5

ℒPSnP ←ℒPS
n
Pn

6

for each streak s in ℒPSnP do7

skyline← skyline_update(skyline, s)8

Algorithm 6: Computing ℒPSk−1
P and ℒPSk

Pk

Input: ℒPSk−1
Pk−1

and pk

Output: ℒPSk−1
P

and ℒPSkPk

// Insert the following line before Line 1 in Algorithm 4.

ℒPSk−1
P
← �

// Insert the following two lines after Line 6 in Algorithm 4, in the
same else branch as Line 6.

if pivot.v > pk then

ℒPSk−1
P
← ℒPSk−1

P
∪{pivot}

4. MONITORING PROMINENT STREAKS
One desirable property of a prominent streak discovery algo-

rithm is the capability of monitoring new data entries as the se-
quence grows continuously and always keeping the prominent streaks
up-to-date. For example, a network administrator may check the
prominent streaks in the network traffic of a Web server till any
particular moment. Formally, given a continuously growing data
sequence P (such as a data stream), the k-th data entry that has just
come is denoted by pk and the sequence so far is denoted by Pk.
At this moment, if the user requests PSPk

, the prominent streaks
of Pk, our method should efficiently discover them.

The BST-based method progressively updates the dynamic sky-
line with new candidate streaks, thus can be applied for monitoring
prominent streaks without modification.



name length # prominent streaks description

Gold 1074 137 Daily morning gold price in US dollars, 01/1985-03/1989.

River 1400 93 Mean daily flow of Saugeen River near Port Elgin, 01/1988-12/1991.

Melb1 3650 55 The daily minimum temperature of Melbourne, Australia, 1981-1990.

Melb2 3650 58 The daily maximum temperature of Melbourne, Australia, 1981-1990.

Wiki1 4896 58 Hourly traffic to en.wikipedia.org/wiki/Main_page, 04/2010-10/2010.

Wiki2 4896 51 Hourly traffic to en.wikipedia.org/wiki/Lady_gaga, 04/2010-10/2010.

Wiki3 4896 118 Hourly traffic to en.wikipedia.org/wiki/Inception_(film), 04/2010-10/2010.

SP500 10136 497 S&P 500 index, 06/1960-06/2000.

HPQ 12109 232 Closing price of HPQ in NYSE for every trading day, 01/1962-02/2010.

IBM 12109 198 Closing price of IBM in NYSE for every trading day, 01/1962-02/2010.

AOL 132480 127 Number of queries sent to AOL search engine in every minute over three months.

WC98 7603201 286 Number of requests to World Cup 98 web site in every second, 04/1998-07/1998.

Table 1: Data Sequences Used in Experiments.

With regard to candidate streak generation, all three methods
(baseline, NLPS, LLPS) use one-pass sequential scan of the data
sequence, therefore they all naturally fit into the monitoring sce-
nario. Specifically, the new data point pk corresponds to the next
iteration of the outer loop in Algorithm 1, 3, and 5. The baseline
method exhaustively lists all streaks ending at pk and updates the
skyline with these streaks. The NLPS method updates ℒPSk−1

Pk−1

to ℒPSk
Pk

, and updates the skyline with the streaks in ℒPSk
Pk

.
The adaptation of LLPS is a bit more complex, as shown in Al-

gorithm 7. This algorithm records the last position when the user
requested the prominent streaks. When pk arrives, ℒPSk−1

P and

ℒPSk
Pk

are dynamically computed by Algorithms 6. The skyline

is updated with the candidate streaks in ℒPSk−1
P , only if PSPk−1

was not requested by the user when pk−1 was visited. Note that if
PSPk−1

was requested, the skyline has already been updated with

the streaks in ℒPSk−1
Pk−1

. Since ℒPSk−1
P ⊆ ℒPSk−1

Pk−1
, we do

not need to update the skyline with ℒPSk−1
P again. Finally, if the

user requests PSPk
, the skyline has to be updated with ℒPSk

Pk

since all the local prominent streaks (with regard to Pk) ending at
pk must be considered. In Section 5 we will show the significant
superiority of this adaptation of LLPS over other methods.

Note that this algorithm degrades to NLPS (Algorithm 3) if the
user requests the prominent streaks at every data entry. On the other
hand, if the prominent streaks are only requested at pn, i.e., the last
entry in the sequence, it becomes the same as LLPS (Algorithm 5).

Algorithm 7: Continuous Monitoring of Prominent Streaks

Input: The new data entry pk

Compute ℒPSk−1
P

and ℒPSkPk
by Algorithms 61

if last_requested_position < k − 1 then2

for each streak s in ℒPSk−1
P

do3

skyline← sklyine_update(skyline, s)4

if PSPk
is requested then5

for each streak s in ℒPSkPk
do6

skyline← sklyine_update(skyline, s)7

last_requested_position← k8

// Now, skyline contains all prominent streaks in PSPk
9

5. EXPERIMENTS
The algorithms were implemented in Java. The experiments

were conducted on a computer with 2.26GHz Intel Core 2 Duo
CPU under Windows 7. The limit on the heap size of Java Virtual
Machine (JVM) was set at 512MB.

We used multiple real-world datasets, including time series data
library4, Wikipedia traffic statistics dataset5, NYSE exchange data6,

4http://robjhyndman.com/TSDL/
5http://dammit.lt/wikistats/
6http://infochimps.com/datasets/daily-1970-current-open-close-
hi-low-and-volume-nyse-exchange-up

Baseline NLPS LLPS

Gold 5.77 × 10
5

6.04 × 10
4

1.05 × 10
3

River 9.81 × 10
5

2.18 × 10
4

1.33 × 10
3

Melb1 6.66 × 10
6

4.47 × 10
4

3.50 × 10
3

Melb2 6.66 × 10
6

4.28 × 10
4

3.49 × 10
3

Wiki1 1.20 × 10
7

7.16 × 10
4

4.79 × 10
3

Wiki2 1.20 × 10
7

5.77 × 10
4

4.75 × 10
3

Wiki3 1.20 × 10
7

7.31 × 10
4

4.70 × 10
3

SP500 5.14 × 10
7

1.69 × 10
6

9.98 × 10
3

HPQ 7.33 × 10
7

5.24 × 10
5

1.08 × 10
4

IBM 7.33 × 10
7

6.97 × 10
5

1.13 × 10
4

AOL 8.78 × 10
9

3.53 × 10
6

1.20 × 10
5

WC98 2.89 × 10
13

1.78 × 10
8

6.69 × 10
6

Table 2: Number of Candidate Streaks.

AOL search engine log7, and FIFA World Cup 98 web site access
log8. These datasets cover a variety of application scenarios, in-
cluding meteorology, hydrology, finance, web log, and network
traffic. Table 1 shows the information of 12 data sequences from
these data sets that we used in experiments. For each data sequence,
we list its name, length, and the number of prominent streaks in the
sequence. Each data sequence was stored in a data file.

Examples of Interesting Prominent Streaks Discovered:

From 1985 to 1989, there had been more than one thousand con-
secutive trading days with morning gold price greater than $300.
During this period, there had been a streak of four hundred days
with price more than $400, though the $500 price only lasted two
days at most.

In Melbourne, Australia, during the years between 1981 and
1990, the weather had been pleasant. There had been more than
two thousand days with minimal temperature above zero, and the
streak was not ending. (We do not have data beyond 1990.) The
longest streak during which the temperature hit above 35 degrees
Celsius is six days. It was in the summer of the year 1981.

More than half of the prominent streaks we found in the traf-
fic data of the Lady Gaga Wikipedia page were around Septem-
ber 12th, when she became a big winner in the MTV Video Music
Awards (VMA) 2010. During that time, the page had been visited
by at least 2000 people in every hour for almost four days.

Number of Candidate Streaks:

The three algorithms for candidate streak generation, namely
Baseline (Algorithm 1), NLPS (Algorithm 3), and LLPS (Algo-
rithm 5), differ by the ways they produce candidates and thus the
numbers of produced candidates. Table 2 shows the total num-
ber of candidate streaks considered by each algorithm on each data
sequence. The baseline algorithm produces an extremely large
number of candidates since it enumerates all possible streaks, e.g.,
(

7603202
2

)

=2.89×1013 for WC98. By contrast, NLPS only needs to

7http://gregsadetsky.com/aol-data/
8http://ita.ee.lbl.gov/html/contrib/WorldCup.html



0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

position

v
a

lu
e

SP500

(a) Data Sequence

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

SP500

streak length (days)

m
in

im
a

l 
v

a
lu

e

(b) Prominent Streaks

0 2000 4000 6000 8000 10000
10

0

10
5

SP500

position

#
 o

f 
c

a
n

d
id

a
te

s

 

 

Baseline

NLPS

LLPS

(c) Number of Candidate Streaks

0 2000 4000 6000 8000 10000
0

200

400

600

SP500

position

s
iz

e

 

 

Baseline , NLPS

LLPS

(d) Size of Dynamic Skyline

Figure 4: Detailed Results on SP500.

data sequence Baseline NLPS LLPS

Gold 78 40 9

River 78 15 3

Melb1 390 22 12

Melb2 387 21 15

Wiki1 711 28 15

Wiki2 711 18 15

Wiki3 689 40 16

SP500 4717 599 21

HPQ 6099 165 18

IBM 5079 209 22

AOL 446622 546 78

WC98 >1 hour 27477 3404

Table 3: Execution Time (in Milliseconds).

consider
∪

1≤k≤∣P ∣ ℒPSk
Pk

, which is a superset of the real promi-
nent streaks PSP but a much smaller subset of all possible streaks
SP . For instance, the number of candidate streaks by NLPS is
1.78×108 for WC98, which is 5 orders of magnitude smaller than
what Baseline considers. LLPS further significantly educes the
number of candidates by only considering LPSs. For example,
there are 6.69×106 LPSs in WC98, which is about 30 times smaller
than 1.78×108. Note that the number of LPSs for LLPS is bounded
by sequence length (Property 2), which is verified by Table 2.

Execution Time:

The number of candidate streaks directly determines the effi-
ciency of our algorithms. In Table 3 we report the execution time of
our algorithms using the three candidate streak generation methods
(Baseline, NLPS, LLPS), for all 12 data sequences. For skyline op-
eration, we implemented the sorting-based, external-memory sorting-
based, and BST-based skyline methods mentioned in Section 1.
Under these different skyline methods, Baseline, NLPS, and LLPS
perform and compare consistently. Therefore in Table 3 we only
report the results for implementations based on the BST-based sky-
line method, due to space limitations. The reported execution time
is in milliseconds and is the average of five runs.

We excluded data loading time, i.e., the time spent on just read-
ing each data file. This is because data loading time is dominated
by processing time of the algorithms once the data file gets large.
In our experiments, WC98 cost 1 second to load while the loading
time of all other datasets was below 30ms.

In Table 3 we use ‘>1 hour’ to denote the execution time when an
algorithm could not finish within one hour (i.e., 3600000ms). This
lower bound is sufficient in showing the performance difference of
the various algorithms.

With regard to the comparison of Baseline, NLPS, and LLPS,
it is clear from Table 3 that LLPS outperforms NLPS, and both
NLPS and LLPS are far more efficient than Baseline. This is ex-
actly due to the large gap in the number of candidate streaks (shown
in Table 2), which in turn determines the number of comparisons
performed during skyline operations.

A Closer Look:

To have a better understanding of the experimental results, we
take a close look at the SP500 data sequence. Similar observations
are made on other data sequences, hence we omit the analysis of
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Figure 5: Cumulative Execution Time at Various Positions, for

Different Reporting Frequencies.
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Figure 6: Total Execution Time by Reporting Frequencies.

other sequences. Figure 4(a) shows the data sequence itself. We see
that the sequence is almost monotonically increasing at the coarse
grain level. Due to that, the number of prominent streaks found in
SP500 (497, as shown in Table 1) is the most among all the data
sequences. We also visualize the prominent streaks in SP500 in
Figure 4(b), where the x-axis is for interval length and the y-axis is
for minimal value in the interval.

In Table 2 we have seen the huge difference among Baseline,
NLPS and LLPS in total number of candidate streaks. These three
algorithms all generate candidates progressively. Therefore in Fig-
ure 4(c) we show, for each algorithm, the number of new candidate
streaks produced at every value position of the data sequence. The
figure clearly shows the superiority of LLPS since it always gener-
ates orders of magnitude less candidates at each position.

The BST-based skyline method maintains a dynamic skyline, as
a binary search tree, in memory. The size of this tree affects the ef-
ficiency of tree operations, such as inserting and deleting a streak.
Figure 4(d) shows the size of the dynamic skyline along the se-
quence of SP500 by each algorithm. The curves for Baseline and
NLPS overlap since they both store PSPk

, at every position k, in
the dynamic skyline. In contrary, LLPS does not need to store some
streaks in PSPk

, hence the tree size is much smaller than that for
Baseline/NLPS when the sequence is almost constantly growing in
the second half of SP500.

Monitoring Prominent Streaks:

In Section 4 we discussed how to monitor the prominent streaks
as a data sequence evolves and new data values come. The adap-
tation of LLPS for monitoring purpose was shown in Algorithm 7.
This algorithm can control at which positions the prominent streaks
(so far) need to be reported.

Take AOL and WC98 as examples. Figure 5 shows the execu-
tion time of Algorithm 7). The x-axis represents the sequence po-



sition, and the y-axis is for the total execution time by that position.
There are five curves in each figure, corresponding to five different
frequencies of reporting prominent streaks. For instance, LLPS-1
means that, whenever a new data entry comes, all the prominent
streaks so far are reported; LLPS-16 means the prominent streaks
are requested at every 16 data entries. As discussed in Section 4,
LLPS-1 is identical to NLPS (Algorithm 3), and LLPS-n is identi-
cal to LLPS (Algorithm 5), where n is the sequence length when it
does not evolve anymore. Figures 5(a) and 5(b) clearly show that
the total execution time of LLPS-i increases as the reporting fre-
quency increases (i.e., reporting interval i decreases). Figures 6(a)
and 6(b) further show how the total execution time changes along
different reporting intervals. We can see that the execution time
drops rapidly at the beginning and quickly reaches near-optimal
value even when the frequency is still pretty high (e.g., reporting
the prominent streaks at every 16 entries.)

6. CONCLUSION
In this paper, we study the problem of discovering prominent

streaks in sequence data. A prominent streak is a long consecutive
subsequence consisting of only large (small) values. We propose
efficient methods based on the concept of local prominent streak
(LPS). We prove that prominent streaks are a subset of LPSs and the
number of LPSs is less than the length of a data sequence. Our lin-
ear LPS-based method guarantees to consider only local prominent
streaks, thus achieving significant reduction in candidate streaks.
The results of experiments over multiple real datasets verified the
effectiveness of the proposed methods.
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